If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x = 0
x^2 = 0
x = 0
x = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
4-(1/x)-(1/(x^2)) = 0
4-x^-1-x^-2 = 0
t_1 = x^-1
4-1*t_1^2-1*t_1^1 = 0
4-t_1^2-t_1 = 0
DELTA = (-1)^2-(-1*4*4)
DELTA = 17
DELTA > 0
t_1 = (17^(1/2)+1)/(-1*2) or t_1 = (1-17^(1/2))/(-1*2)
t_1 = (17^(1/2)+1)/(-2) or t_1 = (1-17^(1/2))/(-2)
t_1 = (17^(1/2)+1)/(-2)
x^-1-((17^(1/2)+1)/(-2)) = 0
1*x^-1 = (17^(1/2)+1)/(-2) // : 1
x^-1 = (17^(1/2)+1)/(-2)
-1 < 0
1/(x^1) = (17^(1/2)+1)/(-2) // * x^1
1 = ((17^(1/2)+1)/(-2))*x^1 // : (17^(1/2)+1)/(-2)
-2*(17^(1/2)+1)^-1 = x^1
x = -2*(17^(1/2)+1)^-1
t_1 = (1-17^(1/2))/(-2)
x^-1-((1-17^(1/2))/(-2)) = 0
1*x^-1 = (1-17^(1/2))/(-2) // : 1
x^-1 = (1-17^(1/2))/(-2)
-1 < 0
1/(x^1) = (1-17^(1/2))/(-2) // * x^1
1 = ((1-17^(1/2))/(-2))*x^1 // : (1-17^(1/2))/(-2)
-2*(1-17^(1/2))^-1 = x^1
x = -2*(1-17^(1/2))^-1
x in { -2*(17^(1/2)+1)^-1, -2*(1-17^(1/2))^-1 }
| (3x-2)(2x+1)=(6x-2) | | 2x-12+3x=5-x+1 | | 50+3m=25-3m | | abs(y-x^2)=abs(x)-x^2 | | .30(11)=.10+11x | | x+37.5+52.5=105 | | .30(11)=.10+110 | | 5n+wr=r-6f | | (y+15)+52.5=105 | | 7x+3x+2=52 | | 4(x+2)-6(3x+2)=x+2(x-2) | | x+3164682341=1212 | | x+1+x(4)=(2)(26) | | 5x^2+40x+10=0 | | 3x^2+80x+300=0 | | 2(z)=105 | | 3x+x=(-6)(6) | | x/7=4/3 | | 2(x-8)+6(2x+13)=3x-12 | | 25-4x=0 | | 3x+8(2-x)=20 | | 133-3x=42x+23 | | 2x+12=-26-8x | | 2x+14=-26+8x | | y=7ln(9x) | | exp(-3)=4 | | e-2=4 | | 5/3-11x/7=-1/2 | | 6x^2+33xy-18y^2=0 | | 4x^3y-401x^2y^2+100xy^3=0 | | 6x^3-20x^2-16x=0 | | 25y^2-100xy+64y^2=0 |